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ABSTRACT

Data stored in an off-chip memory, such as DRAM or non-volatile
main memory, can potentially be extracted or tampered by an
attacker with physical access to a device. Protecting such attacks
requires storing message authentication codes and counters — which
incur a 22% storage overhead. In this work, we propose techniques
for reducing these overheads.

We first present a scheme that leverages ECC DRAMs to reduce
MAC verification & storage overheads. We replace the parity bits in
standard ECC by a combination of MAC and parity bits to provide
both authentication and error correction. This eliminates the extra
MAC storage and minimizes the verification overhead as MACs can
be read in parallel with data through the ECC bus. Next, we use
efficient integer encodings to reduce counter storage overhead by
6x while enhancing application performance.

ACM Reference Format:

Salessawi Ferede Yitbarek and Todd Austin. 2018. Reducing the Overhead of
Authenticated Memory Encryption Using Delta Encoding and ECC Memory.
In Proceedings of DAC ’18: The 55th Annual Design Automation Conference
2018 (DAC ’18). ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3195970.3196102

1 INTRODUCTION

Data in a CPU’s registers and caches is extremely hard to physically
probe or modify. On the other hand, an attacker can easily probe the
data bus, or dump memory contents of off-chip memory through a
cold boot attack [4].

Challenges of Secure Off-Chip Storage. Secure data storage
requires that the attacker cannot a) know the contents of the data
(confidentiality) and b) modify data without detection (integrity).
Confidentiality can be ensured by employing encryption, while
integrity can be ensured by storing a message authentication code
(MAC) along with the encrypted data.

These cryptographic primitives, however, result in high storage
overheads (Figure 1a). Strong encryption requires having a unique,
one-time (non-reusable) value referred to as a nonce. Counter-mode
encryption, the most widely used mode of memory encryption, uses
a growing counter value as a nonce. Counters used to encrypt each
memory block need to be stored as they are necessary to decrypt the
data when it is read back. SGX (Intel’s implementation), for example,
stores a 56-bit counter for each encrypted 64-byte block, resulting in
an ~ 11% overhead [3]. Furthermore, MACs also need to be stored
for each memory block. Again, SGX uses 56-bit MACs - incurring
an additional ~ 11% storage overhead. Memory read latency is also
impacted as reading a protected block requires fetching counter
and MAC values, decryption, and integrity checking.
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(a) Storage Overheads of Authenticated
Memory Encryption and SEC-DED ECC
Figure 1: In this work we i) reduce counter storage overhead and
ii) merge error correction with integrity checking without compro-
mising security or forgoing error correction.

(b) Storage Overhead After Applying
Optimizations Proposed in this Work

Even if attackers cannot create MAC values for arbitrary data,
they can reset data, MACs, and counters to an older value — a process
commonly known as a replay attack. To prevent such attacks, the
counters and MACs need to be protected using an integrity tree —
creating additional overhead. Overall, strong memory encryption
incurs more than 22% storage overhead (from the 21.9% counter
and MAC overhead, plus the hash tree as shown in Figure 1).

Overview of Contributions. We present the following opti-
mizations for reducing the overheads discussed above while still
improving performance:

o We show how the extra memory chips and buses available in ECC
DRAM can be exploited to eliminate the encrypted memory’s
MAC storage overheads — without forgoing error correction or
integrity checking capabilities. We describe how MAC values
(augmented with only 7-bit Hamming codes) can be used for both
integrity checking and error correction. Our results show that
this approach has the added benefit of improving the performance
of authenticated memory encryption by up to 15% as MACs are
read in parallel with the data through the ECC bus.

o We also show how delta encoding can be used to represent coun-
ters with fewer bits (Section 4). Delta encoding stores the differ-
ence (deltas) between two values, instead of storing the values
themselves. Since the deltas will be smaller than the actual val-
ues, they can be represented with fewer bits — resulting in lower
storage overhead.

Combined together, these techniques reduce the encryption
metadata storage overhead from ~ 22% to just ~ 2% without sacri-
ficing performance.

2 BACKGROUND AND MOTIVATION

Authenticated memory encryption aims to protect a system from
an attacker that has physical access to a device. The attacker can
monitor memory buses, or extract data directly out of memory
modules [4]. In this section, we provide an overview of the state-
of-the-art in authenticated memory encryption and the associated
overheads.

2.1 Authenticated Memory Encryption: An
Overview

Protecting off-chip data from bus-snooping and cold boot attacks

requires mechanisms that ensure confidentiality and integrity of
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data. Confidentiality is guaranteed by encrypting memory blocks.
Such encryption is typically performed by XOR’ing each block with
a unique and random bitstream (known as a keystream) — which is
generated by using a strong cipher.

Counter Mode Encryption. State-of-the-art memory encryp-
tion implementations use a block cipher (mainly AES) in counter
mode. In counter mode memory encryption, a distinct counter value
is associated with each 64-byte memory block. A counter value
associated with a memory block needs to be incremented whenever
the memory block is updated. These counters themselves are stored
in the off-chip memory in plaintext.

To generate a keystream for a memory block, we encrypt the
memory block’s counter by using a block cipher such as AES. To
make the keystream unique across different memory blocks, the the
counter is concatenated with the physical address of the memory
block being encrypting before being fed to the block cipher.

Counter Size. The counters need to be large enough to ensure
that they do not overflow and wrap around to 0. An overflow would
result in keystream reuse — which weakens the encryption. To
prevent overflow, counters that are 64-bit or 56-bit wide are typically
employed [3]. Using large counters, however, results in significant
storage overhead. With a 56-bit counter per 64-byte memory block,
the counter storage overhead will be ~ 11%.

Data Integrity. Encryption cannot prevent an attacker from
modifying or resetting data. Ensuring data integrity requires us to
compute and store message authentication codes (MACs) for each
memory block. A MAC is a one-way function computed over the
protected data using a secret key that is securely stored on-chip.

MAG:s are stored for each 64-byte memory block, resulting in
significant storage overheads. For example, Intel SGX computes
56-bit MACs for each memory block, incurring an ~ 11% storage
overhead (in addition to the 11% counter storage overhead).

Integrity Trees. When protecting a large chunks of memory,
the MACs will require more storage than what is normally feasible
on-chip. As a result, MACs need to stored in an off-chip memory.

However, we need to ensure the attacker cannot tamper the
MACs. Otherwise, an attacker can “replay” old values by concur-
rently resetting the counter, MAC, and data to an older value.

MAC values are stored off-chip in a tamper-proof manner by
using integrity trees [2, 3, 10]. The main aim of integrity trees is
to protect the integrity of a large off-chip memory using a small
amount of on-chip metadata storage.

2.2 Previously Proposed Optimizations

Execute-Only Memory (XOM) [7] and AEGIS [12] were the earliest
efforts to design an architecture for tamper-proof execution. In this
section, we highlight subsequent proposed optimizations that are
relevant to our work [2, 10, 13].

Counter and MAC Caches. Verifying integrity by recursively
reading nodes from an integrity tree requires extra memory reads.
Gassend et al. integrated a dedicated cache for the integrity tree[2]
to reduce the latency for reading MACs and counters. Intel’s SGX
implementation has a dedicated cache for MACs and counters [3].

Bonsai Merkel Trees (BMTs). The work by Rogers et al. [10]
made the observation that it is possible to ensure data integrity by
only protecting the integrity of counters. Since the size of counters
is significantly smaller than the size of data blocks, protecting the
counters (instead of the data) results in a significantly smaller tree
— which the authors call a Bonsai Merkle tree. Their technique
requires the counters used for encryption to also be used as an
additional input when computing MAC tags. Intel SGX uses this
optimized tree structure [3]. We also use Bonsai Merkel trees as the
baseline and apply our proposed optimization over them.
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Split Counters. Split counters [13] reduce the size of counters
by storing small (typically 7 bits ) minor counters (m) per memory
block. However, a 7-bit counter would easily overflow, resulting in
nonce re-use after just hundreds of writes to a memory block.

The authors address this issue by coupling minor counters with
a 64-bit major counter (M). A single major counter is shared by
multiple consecutive blocks, incurring significantly less storage
overhead compared to storing a 64-bit counter for every block. The
consecutive blocks that share a major counter form a block-group
- which is typically a few kilobytes. When a block is accessed, it’s
minor counter is concatenated with its major counter to obtain
the full counter value. When a minor counter overflows, the en-
tire block-group is re-encrypted using a new major counter. This
enables the technique to avoid re-encrypting the entire memory.

Split counters can reduce the storage overhead by 8x compared
to storing a 64-bit counter for each memory block. However, this
counter compaction scheme requires frequent re-encryption of
block groups on memory intensive applications.

In Section 4, we present a counter encoding and storage scheme
that results in significantly lower rate of re-encryption while main-
taining the compactness of split counters.

Non-Volatile Main Memory Encryption. Encrypting data in
an NVMM can result in faster storage media wear out [14]. Fre-
quent re-encryption of memory blocks that result from overflowing
counters will exacerbate this problem. The delta encoding scheme
we present in this work will reduce potential storage media wear
out that can result from more frequent re-encryptions induced by
other compact counter storage schemes [13].

3 USING ECC DIMMS FOR INTEGRITY
CHECKING AND ERROR CORRECTION

All servers deployed by major cloud providers today are fitted with
DRAM modules that support error detection and correction (ECC).
In addition, high-end desktops and laptops with ECC DRAM can
be purchased on the market today. In this section, we discuss how
standard ECC DIMMs can be leveraged to reduce the overhead of
secure integrity checking without forgoing the error detection and
correction capabilities ECC DIMMs are meant to support.

3.1 Overview

ECC-capable DRAM stores Hamming error correction codes along
with data words. Current mainstream ECC implementations store
8 extra bits for every 8-byte word, resulting in a 12.5% storage
overhead. These implementations enable single-bit error correction
and double-bit error detection (SEC-DED) within an 8-byte word.

While regular DRAM channels have 64-bit wide data buses,
DRAM modules and channels that support ECC have 72-bit wide
data buses. This enables ECC bits to be read in parallel with the in-
formation bits. As a result, the memory controller is able to perform
independent error checks for each 64-bit bus transaction.

We propose using the extra storage and bus reserved for ECC bits
to store MACs — without forgoing DRAM error detection and
correction. Merging integrity checking and ECC in this manner
provides significant storage savings. SEC-DED ECC incurs a 12.5%
storage overhead, while 56-bit MAC tags incur an additional 11%
storage overhead. When both error correction and tamper-proof
DRAM storage are employed, these storage overheads add up to

around 1/4!" of the protected DRAM space (note that the MAC
bits themselves need to be protected using ECC bits). Merging ECC
and integrity checking reduces this overhead to a total of 12.5% —
the storage overhead of employing ECC only.

Merging ECC and integrity checking also enables us to avoid
the extra DRAM transaction required for accessing MACs, as these
MAC bits will be accessed in parallel with the data block. Further-
more, as MACs stored as ECC bits will immediately be available



Reducing the Overhead of Authenticated Memory Encryption

. 7 bits per
56 bits pe
64 bits p block _m block
bloc =

64-bit Data  8-bit ECC 64-bit Data  8-bit ECC
Bus Bus Bus Bus

(a) DRAM with SEC-DED Support (b) MAC-based ECC Utilizing ECC DRAM
Figure 2: We enable efficient error correction and authentication
by storing 56-bit MACs and 7-bit parity in the space dedicated for
64-bit parity in ECC DRAMs. The MACs are used for authentication,
error detection, and correction. The extra 7-bit parity provides ECC
for MACs. The extra ECC bus lines are exploited for transferring
MAC + parity bits in parallel with the data.

when we read data blocks from DRAM, we do not need to separately
cache the MACs - thereby freeing up on-chip tree cache space.

While implementing this scheme, however, we do not want to
lose the error detection and correction capabilities afforded by ECC
DRAM. As we will detail below, MACs can be used for powerful
error detection and limited error correction. Previous work [5] has
shown how hashes/MACs and full integrity trees can be used for
error detection and correction. While the brute-force error correc-
tion algorithm we present below bears some similarity to [5], our
main focus here is to reduce the memory footprint of authenticated
memory encryption while enhancing the performance of integrity
checking - while still providing error correction.

3.2 On the Security of SGX’s 56-bit MAC Tags

The ECC scheme we propose here relies on the 56-bit Carter-
Wegman MAC tags as introduced by Intel SGX [3]. While 56-bit
MAC:s are typically considered short for security purposes, it has
been shown that they provide sufficient security guarantees in
the context of memory encryption. The analysis in [3] shows that,
other serious practical obstacles aside, the rate of MAC forgery is
bounded by the throughput of the hardware under attack. They
estimate a successful MAC forgery would take 2 million years.

3.3 MAGC:s for Error Detection

MAG:s can easily be used for error detection as bit flips caused by
a hardware fault will cause MAC tag checks to fail. This check is
part of the standard integrity checking mechanism.

On standard ECC DRAM, 64 extra bits are reserved for ECC per
64-byte memory block. Out of the 64 bits normally reserved for
ECC, we use 56 bits for storing MACs. These 56 bits provide robust
error detection for the data blocks - provided there are no bit-flips
in the MACs themselves.

Corrupted MACs. However, we need to address one major is-
sue before effectively using MACs for error detection. Hamming
codes protect both information bits and the additional ECC bits
themselves. In contrast, if a MAC check fails, we cannot determine
whether it’s the MAC or data bits that are corrupted.

To detect and correct bit-flips in the MACs themselves, we gen-
erate parity bits over the MAC tags using hamming codes. We
will only need 7 parity bits to detect double-bit errors and correct
single-bit errors in the MAC itself. Augmenting the MACs with
these parity bits enables us to detect and correct errors in the MACs
themselves without having to scan multiple layers of the integrity
tree. This results in an efficient and simpler implementation.

With these additional bits, we have 56 MAC bits and 7 parity
bits reserved, amounting to a total of 63 bits. These bits fit in the
space reserved for storing 64 ECC bits for every block (Figure 2).

Enabling Efficient Scrubbing. The MAC and parity bits oc-
cupy 63 out of the 64 bits that are available for storing ECC bits. We
use the remaining 1 bit for storing a single parity bit computed over
the cipher text. This bit can be used by a DRAM scrubbing hard-
ware/firmware (which typically rely on parity bits) to quickly and

DAC ’18, June 24-29, 2018, San Francisco, CA, USA

0 SEC-DED ECC: Detected, Uncorrectable
2 E E E MAC-Based ECC: Detected, Correctable

SEC-DED ECC: Undetected, Uncorrectable
MAC-Based ECC: Detected, Correction Expensive

SEC-DED ECC: Detected, Correctable
MAC-Based ECC: Detected, Correction Expensive

Figure 3: The error correction capability of the two schemes
is highly dependent on the number and position of bit-flips.

efficiently scan for single-bit errors without re-computing MACs.
The hamming coded MACs can also be scrubbed as hamming codes
contain a parity bit.

Comparison with Standard Error Detection. Standard ECC
can detect up to 2 bit-flips per 8 byte word. On a 64-byte memory
block, we can detect up to 16-bit errors — provided we do not have
more than 2 bit-flips per 8-byte word.

With our proposed approach, we will have 2-bit error detection
on the MAC bits themselves (as we use standard SEC-DED to protect
them). On the data bits, however, we have full error detection, i.e.,
any number of bit-flips can be detected. Figure 3 compares the two
schemes under different fault types.

3.4 MAC:s for Error Correction

MAC s, unlike Hamming codes, only detect bit flips — but not which
bit(s) flipped. As a result, error correction becomes challenging.
The most straightforward way to achieve MAC-based error
correction without compromising security is performing a brute-
force flip-and-check on each of the bits. When an integrity check
fails, we attempt to correct the bit error(s) by flipping each bit in
the memory block one by one and re-checking the MAC value.

Cost of Error Correction. A simple flip-and-check algorithm
over 64-byte (512-bit) memory blocks will require a maximum of
512 flip-and-checks to correct single-bit errors, whereas correcting
double-bit errors will require a maximum of 130,816 flip-and-checks
(512 combination 2). Since state-of-the-art MAC algorithms, which
are essentially composed Galois field multiplications, can be com-
puted within a single cycle in hardware [3, 13], performing double
error correction within 100s of nanoseconds would be feasible.

Performance Implications. The brute-force ECC scheme will
have minimal impact on performance as DRAM errors are rare
occurrences. Fault analysis on Facebook’s entire fleet of servers
reveals that the majority of the servers affected by DRAM errors
have at most 9 correctable errors per month. [8]. Note that, no
additional steps on top of the existing integrity checking is required
for error detection.

Comparison with Standard Error Correction. Standard ECC
memory is able to correct single-bit errors per 8-byte words. On the
other hand, the level of error correction provided by the brute-force
approach we propose has the following characteristics:

(1) Thelevel of error correction provided depends on the worst-case
latency we are willing to tolerate. Correcting anything beyond
double bit-flips inside a 64-byte block will require millions of
cycles in the worst case.

(2) Unlike Hamming codes, we cannot provide error correction at
the granularity of 8-byte words. As a bit flip in one word will
affect all the bits in the MAC tag, we can only perform checks
over the entire 64-byte memory.

(3) Standard error correction outperforms the flip-and-check scheme
in the event where we have multiple single bit-flips spread
across multiple 8-byte words. However, the flip-and-check ap-
proach can correct double bit errors with reasonable overhead
even when they occur within a single 8-byte word.

In summary, the effectiveness of MAC-based error correction, as
compared to traditional ECC depends on the location of the bit-flips.



DAC ’18, June 24-29, 2018, San Francisco, CA, USA

[ 100 [30] 0 [20]10]

Reference Deltas

Figure 4: The integers in (a) are delta-encoded using 100 as a ref-
erence in (b). The deltas shown can be represented using 5 bits per
value, whereas storing the full integers would have required 8 bits.
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Figure 3 gives examples of different bit-flips and how SEC-DED
and MAC-based ECC perform under those conditions.

4 REDUCING STORAGE OVERHEAD AND
RE-ENCRYPTION RATE USING DELTA
ENCODING

In counter mode memory encryption, we need to track a counter
for each block- resulting in significant storage overheads. In this
section, we propose techniques for storing these per-block counters
in a more compact manner.

4.1 Overview: Delta Encoding

Delta encoding is a data representation scheme that stores the
differences (deltas) between two values, instead of storing the full
values themselves. This results in a more compact representation
when the range of values in the data is relatively small.

Figure 4 illustrates a flavor of delta encoding, known as frame-
of-reference delta encoding, that we will employ for compacting
counters We store a reference value and each counter is stored
as a delta to the reference value. The array [130, 100, 120,110] is
stored as deltas with respect to the reference integer 100: [130-100,
100-100, 120-100, 110-100] = [30, 0, 20, 10].

Note that, in the example, we can represent the deltas using
just 5 bits per value, whereas storing the full integers would have
required 8 bits per value. The storage savings will be much bigger
when we encode large 56-bit counter values, as discussed below.

Delta Encoding of Counters. To delta-encode counters, we
group multiple memory blocks into a block-group. Memory blocks
that are part of the same block-group are encoded using a common
reference value. For example, if we group 64 blocks to form a 4KB
block-group, we will store a reference value and 64 deltas.

Delta encoding significantly reduces counter storage require-
ments. In our design, the reference value is 56-bits, similar to the
size of a counter in Intel SGX, and would never overflow during the
lifetime of a machine. On the other hand, our experimental results
over the PARSEC benchmark show that even a 7-bit delta values
are practical for most workloads (Section 5.3).

The encoding scheme we are proposing here provides the same
amount of storage savings as split counters [13]. However, as we
will detail in the following sub-sections, delta encoding enables cer-
tain optimizations that could not be applied on split counters. The
optimizations we present below reduce the rate of re-encryption,
which in turn limits non-volatile main memory aging resulting
from repeated writes, and also results in better energy efficiency.

4.2 Counter Update and Re-Encryptions

When encrypted DRAM blocks are initialized, all counters are ini-
tialized to zero. These values are represented with reference = 0
and delta = 0 (Figure 5a). When a memory block is updated, the
delta value for that specific block is also incremented.

Delta Overflow & Re-encryption. When a delta overflows, we
need to re-encrypt the blocks in a block group with a new counter
(Figure 5a). As the counter that just overflowed is the largest counter
in the group, we will use it for re-encrypting the block group. In
addition, we increment the reference value to the new counter and
set all the deltas to zero.

The re-encryption operation involves sequentially reading mem-
ory blocks in a block group and encrypting them using an identical
counter value, i.e., the largest counter value in the block group.
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Block Group and Delta Sizes. The decryption pipeline will
perform better if both the reference value and the associated deltas
are stored in the same memory block, as both of these values can
be loaded with a single read operation. There are multiple block
group and delta size combinations that would satisfy this criteria.

To test the effectiveness of our algorithms under low storage
overheads, we evaluate our system using 7-bit deltas (in line with
the 7-bit minor counters evaluated in [13]). With 7-bit deltas, we
can fit a 56-bit reference counter and 64 delta values. Hence, we
picked a 4KB (64 blocks) block group. This results in a 6x smaller
storage requirement compared to storing the full 56-bit counters.

4.3 Minimizing Overflow

The major limitation with delta encoding (as presented so far) is that
small deltas can overflow frequently - similar to minor counters
in the split counters scheme. Delta encoding, however, provides
us with opportunities for reducing the overflow rate. We present
three techniques below for reducing the rate of delta overflow. In
the next sub-section, we will detail how these optimizations are
triggered and handled by the hardware.

Dual-Length Encoding. The delta of more frequently updated
blocks will overflow faster than the less frequently updated ones.
Hence, instead of assigning 7-bit deltas to all blocks in a block
groups, it would be beneficial to assign more bits to deltas that are
growing fast, and less bits to deltas that growing slow. Variable-
length encoding is a mechanism that is used to store integers effi-
ciently by assigning fewer bits to smaller integers.

However, decoding an array of arbitrary length integers would
require numerous cycles — seriously impacting memory access
latency. To mitigate this issue, we designed a constrained form of
variable-length encoding — which we call dual-length encoding.

Figure 6 illustrates our dual-length encoding scheme. We group
deltas in a block-group into 4 logical delta-groups (each containing
16 deltas). Each delta in this case is just 6 bits (instead of 7 bits as
described above). With these slightly shorter deltas, we will have 72
unused bits in each block-group. These extra, unused bits are later
used to expand the delta-group that contains an overflowing value
that cannot be represented using 6 bits. Each delta is expanded with
an additional 4 bits upon overflow.

In the example in Figure 6, at least one delta in group 2 is over-
flowing. To avoid re-encryption, we assign the reserved overflow
bits to group 2. We also set the group index bits to indicate the
overflow bits are assigned to group 2. If group 2 or any other group
overflows after this point, we will re-encrypt the block group.

This constrained form of variable length encoding does not pro-
vide optimal storage savings, but significantly minimizes the decod-
ing latency. The decoding operation also requires minimal extra
hardware (Section 5.3).

Since this encoding cannot eliminate the possibility of overflows,
we try to minimize overflows and re-encryption by employing the
techniques discussed below.

Resetting Deltas. When memory writes have spatial locality,
we can expect delta values of contiguous memory blocks to grow
at a comparable rate. This phenomenon can be exploited to reset
delta values when they converge to an identical value.

Consider the example shown in Figure 5b. Over subsequent up-
dates, all the deltas converge to an identical value, i.e., 8. When this
happens, we can reset the deltas to zero and update the reference
value. The final state in Figure 5b shows how the reference and
delta are reset without having to re-encrypt storage because the
counter values have not changed, only their representation. The
reference value is incremented by 8, and all the deltas are set to 0.

This mechanism is especially effective in reducing re-encryption
rate for workloads that have writes with frequent sequential writes.
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Figure 5: Delta Encoding: Delta overflows are handled by re-encrypting the block group using the largest counter the group (shown in a). We
apply two optimizations to reduce the rate of re-encryption (shown in b, and c).
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Figure 7: Implementation of Delta Encoding.

The results we present in Section 5.3 show that this technique
significantly reduces the re-encryption rate on realistic workloads.
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Re-Encoding Counters. If a delta cannot be reset and overflows,
we will attempt to avoid (or at least defer) re-encryption by re-
encoding the counters using a larger reference value.

In Figure 5c, the last delta would overflow if we increment it
on the next write (assuming 7-bit deltas). Instead, we re-encode
counters with a larger reference, using the following algorithm:

(1) Find the minimum delta, A ;p, in the block group (Amin = 11
in Figure 5c)
(2) Subtract Ap,;, from all the deltas in the block-group.
(3) Add Ap,in to the reference value.
In short, we attempt to re-encode block group’s counters using
smaller deltas to avoid re-encryption. This algorithm is effective if
all the deltas in the block group are greater zero , i.e. Apin # 0.

4.4 Putting it All Together: Delta Encoding
Implementation

Figure 7 shows the main components for implementing delta en-
coding/decoding and handling overflows.
The following extra hardware are introduced:

o Decode Unit: A small piece of hardware for extracting a delta
value and adding it to the reference value is added. The decoding
logic is very lightweight, involving a bit extraction and an add
operation. These operations can be completed in just 2 cycles at
high clock frequencies (Section 5.3).

e Increment and Reset Unit: On a write operation, this unit
increments the deltas. Before incrementing the delta, an overflow

CPU 3.2GHz, O00, 4 cores,

L1: 32KB, 8-way, L2: 256KB, 8-way, L3: 10MB, 16-way, shared
DRAM 4 channels, DDR3-1600
Memory 32KB, 8-way counter/MAC cache,
Encryption | 5-level Off-Chip Integrity Tree (protecting 512MB region)
Benchmark | PARSEC 2.1, sim-med input, 4-thread parallelism

Table 1: CPU was simulated using MARSSx86, integrated
with DRAMSim2 DRAM simulator.

is checked. After a successful increment operation, the reset logic
checks if all the deltas are identical. The extra cycles required for
these operations will not impact application performance as they
are performed on a write.

e Re-encoding and Re-encryption Unit: When an overflow is
detected, the address and counters of the block-group that need to
be re-encrypted is enqueued to the overflow buffer for processing
by the re-encryption engine. Before attempting an expensive re-
encryption operation, the re-encryption engine will attempt to
re-encode the counters using the algorithms described earlier.

Current industrial memory encryption implementations already
contain hardware that can be leveraged for re-encoding and re-
encryption. Intel SGX has logic for swapping out secure pages
to an operating system accessible region. This process involves
a re-encryption operation akin to the one we need to perform
on overflows. Similarly, AMD’s memory encryption hardware is
fitted with a microcontroller that is responsible for re-encrypting
pages during data migration [6]. Both of these existing hardware
components can be enhanced to implement re-encoding and re-
encryption without introducing major hardware.

5 EVALUATION
5.1 Experimental Setup

We simulated the system described in Table 1 using the MARSSx86
cycle-accurate CPU simulator [9], integrated with DRAMSim2 [11].
We modified DRAMSim2 to implement the memory encryption.

Benchmarks. We run the PARSEC 2.1 benchmark [1] to com-
pletion with the sim-med input. We run 4-threads to better stress
the memory system. We were able to run 11 of the 13 applica-
tions in benchmark suite, while the other two failed as they used
instructions that are not fully supported by the CPU simulator.

Memory Integrity Tree. We allocated 512MBs of memory for
secure data storage (protected by an integrity tree). We assume 3KB
of on-chip SRAM is available [3] to store the top-level nodes of the
tree. With this setup, the off-chip baseline integrity tree will have 5
levels. We configured the memory encryption engine with a 32KB,
8-way counter/MAC cache in all the experiments.
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NBMT m Deltas = MACECC o Deltas + MAC ECC

Normalized IPC
(with respect to non-encrypted)

Figure 8: In addition to reducing storage overheads by ~ 10x our op-
timizations also improve the performance of memory encryption.

5.2 Performance Impact

Figure 8 presents the performance impact of authenticated memory
encryption when our storage optimizations are enabled. It can be
seen that our storage-optimized tree also reduces the performance
impact of memory encryption by an average of 5% over the PARSEC
benchmark suite compared to Bonsai Merkel Trees (for the reasons
discussed below). Authenticated encryption has no measurable
impact on some of the applications (bodytrack, vips, blackscholes,
swaptions). These applications do not benefit from any further
optimizations and are not shown in the figure. On the other hand,
our optimizations improve the IPC of the the other applications by
1%-28% (compared to BMTs).

MAC-Based ECC. Our MAC-based ECC scheme enables us to
read the MAC in parallel with the data, reducing the amount of
memory transactions required to verify the integrity of blocks
(Section 3). Avoiding these extra verification overheads improves
IPC over the PARSEC benchmarks by an average of ~3% (with up
to ~15% improvements) compared to Bonsai Merkel Trees (BMTs).

Delta Encoding. Delta encoding is able to improve application
performance as compact counter storage reduces the depth of the
Bonsai Merkel trees — resulting in fewer extra memory reads. For
the system we evaluate, the depth of the tree is reduced from 5 to 4
levels when counters are delta encoded. Furthermore, the counter
cache hit-rate also improves as we are fitting more counters into
a single memory block. Our simulation models do not include the
separate re-encryption logic, but its performance impact will be
minimal as re-encryption can be performed without completely
suspending the rest of the system.

5.3 Delta Encoding

This section analyzes the re-encryption rate, and the performance
impact of counter decompression when employing delta encoding.

Counter Decoding Overhead. Counters need to be decoded by
concatenating the deltas with extra overflow bits (or zeros), and
then summing the base and delta. To measure the decoding over-
head, we synthesized the decoder logic to IBM’s 45nm silicon-on-
insulator (SOI) technology library using Synopsis Design Compiler.
With this setup, the decoding logic is able to complete within 2
cycles for frequencies up to 4GHz, and has negligible area overhead
(~ 0.002mm?). Our simulations account for these 2 extra cycles.
The other operations associated with delta encoding (counter re-
set, re-encoding, and re-encryption) are triggered during a write,
and hence will not directly impact read latency. Furthermore, as
discussed in Section 4.4, current industrial memory encryption im-
plementations already contain hardware that can be leveraged for
re-encoding and re-encryption.

Re-Encryption. If a delta overflows, re-encryption is triggered
on the block-group (Section 4.2). Table 2 compares the re-encryption

Salessawi Ferede Yitbarek and Todd Austin

[ Program | 7-bit Minor Split CTR[13] [ 7-bit Delta | Dual Length Delta |

facesim 880 113 176
dedup 725 51 14
canneal 167 167 128
vips 77 77 24
ferret 33 23 5
fluidanimate 4 4
freqmine 3 0 0
raytrace 2 2 0
swaptions 0 0 0
blackscholes 0 0 0
bodytrack 0 0 0

Table 2: Average Number of Re-Encryptions per 1 billion cycles. Av-
erage across three full executions to account for variations in multi-
threaded execution.

rate for different counter representations. It can easily be seen
that, for memory intensive workloads, delta encoding (combined
with our delta reset algorithms) significantly reduces the num-
ber of re-encryptions compared to split counters [13]. Dual-length
deltas perform better than 7-bit deltas overall. On facesim, however,
dual-length deltas have increased re-encryption rate as multiple
delta-groups overflow the default, shorter 6-bit delta storages con-
currently, and cannot be all extended using the reserved overflow
bits. As discussed in Section 2.2, this makes delta encoding more
efficient and non-volatile memory friendly.

6 CONCLUSION

In this work, we presented two optimizations that can be combined
to reduce the overhead of counter and MAC storage, while simulta-
neously lowering the performance impact of authenticated memory
encryption by up to 28%.

We showed how the MAC storage overhead can essentially be
eliminated on a system that already has ECC memory by substi-
tuting the 64 parity bits with a 56-bit MAC plus 7 parity bits. This
combination of MAC and parity can be used for error detection
and correction, as well as memory integrity checking. Furthermore,
we show how the counter storage overhead can be significantly
reduced by using delta encoding.
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